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ON THE ANALYSIS OF TRIANGULAR MESH GRILLAGES

J. D. RENTON
Department of Engineering Science, University of Oxford, Oxford, England

Abstract—Finite difference equations for the analysis of triangnlar mesh grillages are derived on the assumption
that the torsional stiffnesses of the individual beams are negligible. General solutions of these equations are
given and can be used as a rapid means of finding the deflections of such grillages. These solutions are applied
to give the deflections of grillages with rectangular, circular and triangular boundaries. In the particular cases
examined it is shown that, as the mesh becomes infinitely fine, the grillages tend to behave like plates.

NOTATION
a fength of a grillage beam
D 3/()El/4a
EI bending stiffness of a grillage beam
E.E, finite difference operators defined by equations {8) and (5}
F shearing force applied to the end of a beam
GJ torsional stiffness of a beam

K;to K, constants defined by equations (15} to 21}
M bending moment

q distributed load per unit area
M, M, clockwise moments about the axes & and » respectively
T torsional moment
w load applied normal to the grillage at a joint
X ¥ oblique finite difference co-ordinates shown in Fig 2
XY Cartesian co-ordinates parallel to the axes y and £ respectively
o 2Elja®
B Glla
y angle between the axis of 2 beam and the axis & (see Fig 1)
8y Kronecker delta
3(x, v} defiection of a joint with co-ordinates (x, 1)
8,8, clockwise rotations about the axes ¢ and y respectively
v constants
&n finite difference vo-ordinates as shown in Fig 2
bending rotation of a beam as shown in Fig 1
¥ torsional rotation of a beam as shown in Fig {
W joint displacement normal to the plane of the grillage beams

The subscripts 1 and 2 refer to the ends 1 and 2 of the beam shown in Fig 1.

1. INTROBDUCTION

Finite difference calculus has already been used to analyse the behaviour of rectangular
mesh grillages. By this method, Ellington and McCallion {1] have derived the moments
and deflections induced in such grillages, on the assumption that the torsional stiffnesses
of the members are negligible. Thein Wah [2] has extended this analysis to allow for the
torsional stiffnesses of the members and obtained solutions by methods analogous to
those used by Navier and Levy for plate problems. The authar [3], also allowing for the
torsional stifinesses of the members, has suggested a more general form of Navier solu-
tion, using a double Fourier series, and given other solutions for circular boundary
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conditions. Similar methods can be applied to the analysis of triangular mesh grillages
if an oblique co-ordinate system is used. A 'large proportion of such grillages have equi-
lateral triangular meshes and attention will be .confined to such cases, although the
method could also be applied to other forms of triangular mesh provided that the forms
are generated by repetition of a basic pattern of members.

2. THE DIFFERENCE EQUATIONS

The ordinary slope-deflection equations, relating the loads and deflections at the ends
of a beam, may be written in the following matrix form

[ Tﬂ (B0 O7[¥,] [-8 O 0 [v-:
M| =|0 2a%« 3ax||¢,|+] 0 a*a —3aal|¢, (1)
LFI_ LO 3ax 6a]lw, ] 0 Jax —6a jlw,
] [-8 O 0 Jf¥«} [ O 0 [[¥.
M,| =] 0 a*x 3ax||¢,|+{0 22« —3aal|¢, 2
 F, ] . 0 —3ax —6a]iw, 0 —3ax 6a w5
where
« = 2El/a, B =GJja 3)

and, as shown in Fig. 1, the subscripts 1 and 2 refer to the ends 1 and 2 of a beam of
length a, T is a torque, M a bending moment, F a shearing force, ¥ an angle of twist,
¢ an angle of bending and w a vertical displacement. The bending stiffness of the beam is
EI and its torsional stiffness is GJ.

Fic. 1.

If these stiffness matrices are referred to co-ordinates &, » inclined at a clockwise
angle y to the original system, as shown in Fig. 1, then the stiffness matrices of equations
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(1) and (2) must be premultiplied by a matrix t and post-multiplied by its transpose where

cosy —siny €

t=1|siny cosy O 4
0 0 1
giving
My [ Bcos?y+2a*asin?y  sinycosy(f—2a%0) —3aosiny [0
M, | =| sinycosp(f—~2a%) Bsin’y+2a%xcos®y  3axcosy ||0,;
Fy L —3an siny 3accosy 6o Jheoy |
[ —Bcos?y+a*asin®y sinycosv(—p—a*a) 3axsiny ([0,
sinycos y(—f—a’*x) —Bsin*y+a’acos’y —3axcosy || 8,
N —3axsiny 3acx cos y —6a Lo, | )
My, [— B cos*y+a’usin?y sinycosy(—f—a*e) —3aasiny’|[ 6]
M,; |=|sinycosy(—B—a’a) —Bsin*y+a’acos’y 3axcosy |}0,,
F, 3 3aasiny —3ax cosy —6x Ly ] ©
[ Bcos?y+2a%asin®y  sinycosy(f—2a*w)  3axsiny [0, ]
+| sinycosy(f—2a%x)  Psin’y+2a’acos’y  —3axcosy || O,
L 3an siny ~3axcosy 6 Lo,

Using equations (5} and (6), the loads applied at any joint of the grillage can be
expressed in terms of the deflections of that joint and of the adjacent joints. Two systems
of finite difference co-ordinates (x, y} and (&, ) will be used, where

f=xty  n=x-y )

Figure 2 shows the co-ordinates of a general joint and the adjacent joints of the grillage
in terms of both systems. The deflections of the adjacent joints may be expressed in terms

{xy-1} (x+hy}

(Eimen) S\ (&) ‘
{x-dy-1) {xy) (x+1,yH
( (
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of the deflections of the joint (x, y) by means of finite difference operators E, and E,
where

Ed(x,y) = d(x+1,y);  Ed(m=0i+Ln+1) ®)
Eb(x,y) = dx, y+1);  ESn =4dE+1,n-1) ®
and &(x, y), for example, is the deflection of the joint (x, y). If the torsional stiffness of

the grillage beams are taken as negligible in comparison with their bending stiffnesses,
then the external loads M,, M, and Wapplied at the joint (x, y) are expressed by

4M.
\/(3);2& = [(E;l+E;1)+(Ex+Ey)+8]\/(3)0§“—[(E;l -—E;l)—f-(Ex—Ey)](}"
ﬂs[(E;l—Ey—l)"'(Ex"E;)]% (10)
4M, _ B _ ) o
= B B )+ (B E)NOWHIET +E )+ (Bt E) +4(Es ' Ey  + E,E,)
+ 2410, + 1B + By )= (B + B+ AB By~ BB an
2w

o = UEX '~ E; )~ (E.— E)IN (30~ [(ES '+ E; )~ (B, + E))+ 2E; E; ' — E,E,)6,

—A[(E7 '+ E; Y+ (E,+E,)+(E 'E; ! +ExEy)~61§. (12)

It will be seen that equations (10) to (12} could have been written in a symmetrical matrix
form in accordance with Clerk Maxwell’s reciprocal theorem.

3. SOLUTION OF THE DIFFERENCE EQUATIONS

For convenience, all solutions will be expressed in terms of the co-ordinates (£, )
rather than the co-ordinates (x, y). It has been shown [3] that if

E{f (&)} = el n) (13)

where €{f(, n)} is any finite difference function of the function f(&, ) in terms of the
operators E, and E, and g(¢, n) is the resulting function then

E{DLSE M} = DIE{ S, m}] = D[e( ] (14)

where D[ f(&, n)] is any partial differential function of the function f(&, n) Thus, having
established relationships of the type given by equation (13), further relationships can be
found by using equation (14). For example, the following Table 1 lists functions f(&, )
in the left hand column. A finite difference function € is listed at the head of each column
and the results g(&, n) of its operation on the functions f(&, ) are listed below it.
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TaBLE ]
{E;'+E; 1}-i-(E,,-H‘Ey) (Ex'—E;)Y+(E,~E) E'E;'+EE,
&8 HES 1083+ 59 0 2(E% 4+ 4083 + 80¢)
n® 4n3 +10np* + 5n) 0 253
&yt HSH+6S D0t +6n7 +1) | 64E + P +Ln + &) 2qH(E* 42487 + 16)
cos ué cos vi 4 cos'u cos v cos ué cos vy 4 sin psinvsin ué sin vy 2 cos 2p cos pé cos vy
(E;'+E;)—(E.+E) (E;'~E; 2Y~(E,~E,) E;'E;'—E.E,
& —4(58* + 1082+ 1) 0 — 4(5&% +408% 4 16)
n® 0 ~45n*+10p% + 1) 0
St — 168+t + 61> + 1) —1607* + )&+ 6E2+ 1) —len*(E+49)
cos ué cos vy 4 sin u cos v sin u cos vy 4 cos p sin v cos u sin vy 2 sin 2u sin ué cos vy

The result of any operation on any function considered in this paper can now be obtained
from Table 1 by using equation (14). For example

2
(E B3 +E ENEP) = (B =B 14 B B 7 el

1 8 &
= R 5;-13[64(63'13+5311+ &n®+&n)] = 8(3¢%n +1).

On substituting functions obtained in this way into equations (10) to (12), solutions for
various loading conditions can be found. The most common problems concern the be-
haviour of grillages when only forces normal to the grillage are acting, so that M, and M,
will be taken as zero. The fundamental solutions for such cases are given in the following
table, where the related deflection -or load functions appear on the same line below the
appropriate deflection or load.

TABLE 2
0, o, w w
0 (30£%—44)/3a &3 1080a&
(—30n* +4)/3,/(3)a 0 n® 1200y
8(—9&*n® + 6n° + 36820 — 14n) BR7E3* — 683 — 36£n? + 347%) vis
—_e 2. 4 3 2,2 4 5
N Y7 & 47+ 36870° + 9 4 55)
0 K, sinpé cos ué K, cos
K,sinvy 0 cos v K, cosw
K cos ué sinvy K sin ugécos vy cos pé cos vy K cos ué cos vy
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where

K, = _Q sin p+sin 2p (15)
al|2cos2u+cos u+6
3(sin u+sin 2u)?
K,=—-12 2u+2 -3 16
2 a[cos phacosp—o+ 2cos2u+cospu+6 (16)
2,/(3)sinv
Ky=Y——-
> a(cos v+2) (17)
(1~ cos v)?
K, = 120 ——— 1
4 a[ cosv+2 (18)
K 2\/3 sin ¥(2 cos” i + 6 cos y+cos V) 19)
> 4 cos’p cos v+9 cos?u+cos’v+6cos pcos v+ 7
6 sin (2 cos?p cos v+ 5cos u+2 cos v)
K¢ = —- 3 5 3 20
4 cos’u cos v+9 cos“u+cos“v+6cosucosv+7
K, = —12a[cos2u+2cos,ucos v—3+\/( Ja Kscosusinvy
—gKG sin (2 cos u+ cos v)]. (1)

Further solutions can again be established by means of equation (14) and also by substi-
tuting imaginary or even complex values for 4 and v. Examples of the application of these
solutions to specific loading and boundary conditions will now be examined.

4. RECTANGULAR BOUNDARY PROBLEMS

It has previously been shown [3] that any loading on a rectangular mesh grillage may
be represented by a double Fourier type of series. The same is true of a triangular mesh
grillage and the appropriate expansion in this case is

q )4 2 2
W=W(En=Y Z(as,cosz——écos—n—r1+bs,cos———ésmgﬂn

s=0r

2ns 2nr 2
+c,, sin —n—«f cOs _nn_” +d,, sm 6 sin ﬂn) (22)

where
n L AW, n) cos 2rs/m)é cos 2ar/n)y

G = Z 2. L+ 8, )1+ By (156, 0) (L+ 627,) =
AW (¢, n) cos (2rs/m)é sin (2rr/n)n
= 24
o £=0 n=1 mn(1+8;,0)(1+025,m) (24)
_rotne AW, ) sin (2Zrs/m)¢ cos (2rr/nin 25)
Cor = E=1 n=0 mn(1+5r o)(1+6,,.,)
m—1n— l

m n
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and §, ; is a Kronecker delta. For any values of 2¢ and 2p less than m and n, respectively,
equations (22) to (26) give the best representation of any generalized loading W(¢, n) in
terms of a double Fourier type of series in the range of integer values of & between the
limits 0 and m—1 and integer values of # between 0 and n—1.

A particular problem of interest is the analysis of a triangular mesh grillage with a
pinned rectangular boundary. In this case it is more convenient to express the loading
entirely in terms of sine functions even though, for a given number of terms, the accuracy
of the expansion may be reduced. For the case of rectangular mesh grillages, the resulting
Navier type of solution has already been given by Thein Wah [2]. The expression for the
loading now reduces to the form

m—1n—1

W=Y Y d,sin—¢sin—p 27)
s=1r=1 m n
where
m—1n— 14W
d,=y y 2=l (é’ AW G0 ™% sin ™y (28)
S 1 m n

and the boundaries lie on ¢ equal to 0 or m, n equal to 0 or #. Then from Table 2 it can
be deduced that the deflections of a joint with co-ordinates (&, n) are given by

m—1n—1

nr
= —d P cos & 2

6, s;l r; ds, X, % sin écos o (29)
m—1n-1

6,=Y Y —d, —cos~§ sin —n (30)
s=1r=1 K
m—in—1 d’

w= Y Z—sm ésmnn (31)
s=1r= 1

It follows directly that the boundary conditions of zero displacement and zero rotation
about an axis normal to the boundary are fully satisfied. Since the functions used are
skew symmetrical about the boundaries, the condition, that no moments are applied
about the boundaries, is also satisfied.

5. CLAMPED CIRCULAR BOUNDARIES
The equation of a circle of radius R in.terms of the co-ordinates (&, ) is given by

4 2
E24 3y 2—-§——0 (32)

As previously noted [3], only integer values of ¢ and n are completely meaningful so that
the above equation really represents a number of discrete points at which the joints of
the grillage coincide with the circle. However, it is convenient and sufficiently accurate
for most purposes to consider the equation to apply to all points at which the grillage
meets the circle. It was found [3] that the maximum error involved in such an assumption,
when applied to a rectangular grillage with a circular boundary of fourteen bays diameter,
was 2-7 per cent of the central deflection.
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Choosing suitable derivatives of the solutions given on the first three lines of Table 2,
the following solution gives the deflections induced by a uniform load W applied to each
joint of a triangular mesh grillage with a clamped circular boundary.

__— 2, 4,2 4R
b = 34 s <£ Iz ) (33)
(., 4R?
b = 72aa< '"7;7> (34)
2 _ﬁy
~ 576x ( Z ) (35)

It will be observed that the conditions of zero displacement and rotation on the
boundary are fully satisfied.

6. PINNED TRIANGULAR BOUNDARIES

Figure 3 shows a triangular mesh grillage with a triangular boundary. If the length of
a perpendicular from a vertex to a side of the boundary is 4 and the origin of co-ordinates

ININININININININN
INONONINONINONIN/N/N
AVAVAVAVAVAVAVAVAVAVAN
N\ NN NNNNNININ

FiG. 3.

is taken at the centroid of this triangle then the equations of the three boundaries are
24 fin = 44 ¢ 44
EN(EIR =370’ =3 /00

The most general fifth-order expression for w, giving zero vertical displacement on these
boundaries and which is also cyclically symmetrical with regard to a rotation through 120°
about the centroid, is

o= st (s (g (4 0-)

3 2 2 2 2A3 2 2 2
= —Clp—e- —)—(c )+1J(3) ez 32 —p2)

n= - (36)

(37)
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where b and C are constants. The corresponding expressions for 0, and 6, are

- 4 2,2 2 2y p2(£2 5 44 (2 16A2>]
0, = — \/(3) [ﬁ +6E2n2 ~ 159 +\/(3) (&% +3n?)—b* (&2 -3n%)— \/(3) b +27a2

(38)

4AC 24 84 1642
o= [ 3J(3)][652 "+ o o ‘3”2] (39)

Obviously, 0, is zero on the first boundary given by equations (36) so that there is no rota-
tion about an axis perpendicular to this boundary. Then since the solution is cyclically
symmetrical with respect to a rotation through 120° it follows that boundary rotations
are confined to rotations about the boundary lines as would normaily be the case for
pinned supports.

By the same methods as those used to derive the original equations, it is possible to
establish that the moment applied about a boundary parallel to the ¢ axis, M} say, is
given by

4MB . i
\/(3);201 = [Ex+E;1+4]\/(3)9¢-—[—Ey 1+Ex]9,,—6[—Ey 1__Ex+2]6_§ (40)

Attention has already been confined to cases where M, is zero at all joints of the grillage.
Further, if M? is zero at a boundary on which o is also zero, then from equations (10)
and (40) it follows that

(ES ' —E; )~ (E,—E)V ()0~ [(E; ' + E; )~ (E.+E),

—6[(E;’+E;‘)+(Ex+Ey)]% =0, @1)

The form of equation (41) is more convenient to use than that obtained by equating the
right-hand side of equation (40) to zero since in the former case Table 1 can be used.
On substituting the deflections given by equations (37) to (39) into equation (41) it will be
found that the moment about the boundary, given by the first of equations (36), is zero if

442
b*> =4 -~1]).
<9a ) 42)
Again, from the cyclic symmetry of the solution chosen, the bending moments about the
other boundaries are also zero for the same value of b. Thus the full and exact solution for

a triangular mesh grillage with triangular pinned boundaries, of the type shown in
Fig. 3, loaded by a uniform load W at each joint is given by

W 44n \? . 5 4_/12_><2 1647\  16An7

% = 19244 [(52+3”2+¢(3)a> Ba it nd =t A S T B T3] B
_\/(3)Wé[ 24 ][ 44n  324° ]

b = Yasan |"T39@al |5t g0 T “4)

_ J®)Wa 24 324° 164> ., .,
Ty ["3_52"———3\/(3)(1(52+3"2)+"_—81¢(3)a3 o —4—E - (45)
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7. THE PLATE ANALOGY

When the mesh of the grillage becomes very fine, that is to say when the bay length a
is very small in comparison with the overall dimensions of the grillage, the plate-like
behaviour of the grillage becomes more apparent. To examine this, it is convenient to
introduce a new co-ordinate system (X, Y) related to the physical dimensions of the
grillage, where

x=Y ‘23)“ o v=4c (46)

The load W will be considered in terms of the load per unit area g, where

2w
EENET
In the case of the rectangular, pin-supported grillage considered in Section 4, it will

be assumed that the overall dimensions of the rectangular boundary are 4 and B in the
X and Y directions respectively, so that

4= —ﬁ‘/(;)‘"’, B= f? (48)

(47)

Then from equation (27) the distributed load per unit area, g, is given by

n—-1m—1

nr s
g = gy Sin— X sin— Y (49)
rgl sgl A B
where
_ 2d,,
Grs = \/(3)612 ‘

In the expressions for K5 to K, given by equations (19) to (21), 4 and v take the values
nsa/2B and \/(3)nra/2A respectively, so that for any given values of r and s, y and v
diminish as the fineness of the mesh increases. If then the powers of ¢ and v higher than
the fifth order can be ignored,

K, = a[3u* + v*]%

On substituting the above values into the expression for @ given by equation (31), this
deflection becomes

n—1m—1
_ Qs .owrX . 7msY
w = 2 s;l T DGYA? 157 sin ——sin — (50)
where
3 2
p = WO (1)

8

It will be seen that equation (50) coincides with the solution for a pinned rectangular
plate given by Navier (cf. [4], p. 109).
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Applying the substitution given by equations (46) and (47) to the deflection of a
triangular mesh grillage with clamped circular boundaries given by equation (35) yields

q

“ = 64D

[RZ—Xx2-Y?P (52)
where D is given by equation (51). This corresponds to the solution for clamped circular
plates (see [4], p. 55).

Again, making the same substitutions into the expression given by equation (45) for
the deflection of a triangular mesh grillage with pinned triangular boundaries results in
the expression

4q

—_ 1 ry3_ay2y_ 2, y2y, 4 4311442 _ 2 _Y2_y2
© = oS [XP=3Y X —A(X? 4 V) + £A°] 347 —a* — XP Y] (53)

where D is again given by equation (51). As the grillage becomes infinitely fine, a tends to
zero and equation (53) then coincides with Woinowsky-Krieger’s solution for a uniformly
loaded pinned triangular plate (see [4], p. 313).

8. CONCLUDING REMARKS

It has been shown that finite difference methods may be extended to the analysis
of triangular mesh grillages by the employment of oblique co-ordinates. The solutions
presented here are particularly useful in the analysis of grillages with large numbers of
members and can be employed to speed considerably both manual and computer methods
of solution. All the solutions given in the paper lead to a value of D for the grillage stiff-
ness given by equation (51). It would appear then that this value is a fundamental property
of these grillages.

By arguments analogous to those applied to periodic meromorphic functions in the
complex plane, it is possible to show that any regular grillage pattern can be subdivided
into parallelogram modules. The behaviour of such grillages can then be described in
terms of two finite difference operators for which a unit step is equal one side of the
module. Thus, in theory, any regular grillage may be analysed by reference to an oblique
co-ordinate system.
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Résumé—Les équations de différence finie pour I’analyse des grillages 4 mailles triangulaires sont dérivées
de I’hypothése suivante: la rigidité de torsion des poutres individuelles est négligeable. Des solutions générales
a ces équations sont indiquées et peuvent &tre utilisées comme moyen rapide, pour déterminer la flexion de ces
grillages. Ces solutions sont appliquées pour trouver les flexions des grillages de périmétre rectangulaire, cir-
culaire et triangulaire. Dans les cas particuliers qui sont étudiés ici, on voit que les grillages ont tendance &
ses comporter comme des plaques, étant donné que la maille devient infiniment fine.
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Zusammenfassung—Differenzen-Gleichungen fiir die Analyse von dreieckigen Gitter Schwellrosten sind von
der Annahme abgeleitet das die Verdrehungssteifheiten der einzelnen Balken unbedeutend sind. Aligemeine
Losungen dieser Gleichungen sind gegeben und konnen als ein schnelles Hilfsmittel fiir die Auffindung von
Durchbiegungen solcher Schwellroste verwendet werden. Diese Losungen weden angewendet um die Durch-
biegungen von Schwellrosten mit rechtwinkeligen, kreisformigen und dreieckigen Begrenzungen zu geben. In
besonders gepriiften Fillen wird angezeigt das, wenn die Gitter unendlich fein werden, neigen die Schwellroste
dazu, sich wie Platten zu verhalten.

AbcTpakT—KoOHeuHble YpaBHEHHA Pa3HULI 7 aHAJIA3a PEWETOK TPEYTOJIbHOMH CETKM BBIBEACHHI “Ha
OCHOB3RHHH NPENMOIOKEHUA, YTO XKECTKOCTH HHAHBUIAYANBHBIX CTEPXKHEH NMPH KpyYeHHH-—HE3IHAYMTENbHA.
JlaHbl OOlIHe PELIEHHs 3THX ypaBHEHHM, U OHH MOTYT NPHMEHATLCH, KaK ObICTPHM CHOCO0 HaxoXIeHHs
npornboB TakMX PEILETOK. DTH PelLUeHUSA NPUMEHNAIOTCA, YTOOh JaTh Nporubsl peméTok ¢ NMpAMOYToJib-
HbIMM, KPYTJIBIMH H TPEYTONbHBIMH KOHTYpamu. B HccnegyeMbix OCOOEHHBIX Ciiy4asix IOKa3aHo, 4To,
KOT[Ia CETKA CTAHABUTCS 6eCKOHEYHO MENIKO|, PELUETKH CKJIOHHBI BECTH Ce0sl, XaK IUIACTHHEI.



